ここから本文です

解決済みのQ&A

数学Bの【平面に下ろした垂線】の問題です。 4点O(0,0,0),A(1,2,0),B(2,0,-1),C(0,...

swteewlさん

数学Bの【平面に下ろした垂線】の問題です。
4点O(0,0,0),A(1,2,0),B(2,0,-1),C(0,-2,4)を頂点とする四面体OABCについて考える。

頂点Oから平面ABCに垂線OHを下ろしたとき、点Hの座標、OH↑の大きさ、△ABCの面積と四面体OABCの体積を求めよ。

  • 質問日時:
    2009/11/23 12:23:39
    ケータイからの投稿
  • 解決日時:
    2009/11/28 17:44:09
  • 閲覧数:
    299
    回答数:
    1

ベストアンサーに選ばれた回答

budewslakothさん

ABCの法線ベクトル(4,1,2)/√21
平面ABC
4x+y+2z=6
原点をとおりABCに垂直な直線
(4t,t,2t)
交点H
t=2/7→(8/7,2/7,4/7)
|OH|=2/7√21
△ABCの面積
|(B-A)×(C-A)|/2=3/2√21
四面体OABCの体積 |OA×OB・OC|/6=3

質問した人からのお礼

  • 感謝回答ありがとうございました!!
  • コメント日時:2009/11/28 17:44:09

グレード

Q&Aをキーワードで検索:

総合Q&Aランキング

Yahoo! JAPANは、回答に記載された内容の信ぴょう性、正確性を保証しておりません。
お客様自身の責任と判断で、ご利用ください。

知恵コレに追加する

閉じる

知恵コレクションをするID/ニックネームを選択し、「追加する」ボタンを押してください。
※知恵コレクションに追加された質問や知恵ノートは選択されたID/ニックネームのMy知恵袋で確認できます。

ほかのID/ニックネームで利用登録する