(1)
y = x^2 - 4
はx=2でx軸と交わる。
∫[0,2](-2x+11)dx + ∫[2,11/2](-x^2-2x+15)dx
= -4 + 22 + [1/3 x^3 - x^2 + 15x]_[2,11/2]
= 18 + 1/3(11^3/4^3 - 8) - (121/4 - 4) + 15(7/4)
= 22 + 1/3(121/4)(11/2 - 3) - 8/3 + 105/4
= 22 + (-32+315)/12 + 121/12(5/2)
= 22 + 283/12 + 605/24
= (528+566+605)/24
= 1699/24.
(2)
交点は
25x^2 - 500x + 2500 = 100(x-2)
x^2 - 20x + 100 = 4(x-2)
x^2 - 24x + 104 = 0.
x = 12-√(121-104) = 12-√(17) =: a.
∫[0,a](-5x+50-10√(x-2))dx
= -5/2 a^2 + 50a - 20/3(a-2)^(3/2) + 20/3*2√2
= -5/2(24a-104) + 50a - 20/3(10-√(17))^(3/2) + 40√2/3
= 260 - 10a - 20/3(10-√(17))^(3/2) + 40√2/3
= 260 - 10(12-√(17)) - 20/3(10-√(17))^(3/2) + 40√2/3
= 140 + 10√(17) - 20/3(10-√(17))^(3/2) + 40√2/3.