f(x) = sin(q(x − a)) のフーリエ変換が分かりません。途中式もふくめてデルタ関数の持ち込み方を教えてください。q, aは実数です。

大学数学 | 物理学13閲覧xmlns="http://www.w3.org/2000/svg">50

ベストアンサー

2

2人がナイス!しています

その他の回答(1件)

1

f(x)=sin(q(x-a))=sin(qx)cos(qa)-cos(qx)sin(qa) =cos(qa)(exp(iqx)-exp(-iqx))/(2i)-sin(qa)(exp(iqx)+exp(-iqx))/2 =((-sin(qa)-icos(qa))exp(iqx)+(-sin(qa)+icos(qa)exp(-iqx)))/2 F[exp(±iqx)]=∫exp(±iqx)exp(-iωx)dx=∫exp(i(±q-ω)x)dx =δ(ω∓q) 従ってF[f(x)]=((-sin(qa)-icos(qa))δ(ω-q)+(-sin(qa)+icos(qa)δ(ω+q))/2 かな

1人がナイス!しています