ここから本文です

別証ってなんですか?

アバター

ID非公開さん

2020/4/203:57:17

別証ってなんですか?

閲覧数:
18
回答数:
1

違反報告

ベストアンサーに選ばれた回答

2020/4/903:23:02

別証とは、別証明のことです。
下記に使い方の例を挙げます。
普通は、➀の方法で証明するが。別の方法②でも説明できる。という感じです。


➀最大値定理の証明

有界性定理により f は上に有界ゆえ、実数のデテキント完備性(英語版)から f の最小上界(上限)M が存在するから、M = f(d) を満たす点 d ∈ [a, b] を見つければよい。自然数 n に対して、M が最小上界ならば M – 1/n は f の上界にはならないから、適当な dn ∈ [a, b] が存在して M – 1/n < f(dn) とできる。これにより点列 {dn} が作れる。最小上界 M は f の上界なのだから、任意の n について M – 1/n < f(dn) ≤ M が成り立ち、従って数列 {f(dn)} は M へ収斂する。
ボルツァーノ・ヴァイエルシュトラスの定理により、適当な d に収斂する部分列 {dnk} が存在して、区間 [a, b] が閉ゆえ d は [a, b] に属する。f は d において連続だから、数列 {f(dnk)} は f(d) に収斂するが、数列 {f(dnk)} は M に収斂する数列 {f(dn)} の部分列ゆえ、M = f(d) でなければならない。従って f は d において上限 M に到達する。


②別証
最大値定理の別証明
像集合 {y ∈ R : y = f(x), x ∈ [a,b]} は有界であるから、実数直線に関する上限性質により上限 M = supx∈[a,b](f(x)) を持つ。f(x) = M を実現する x が存在しないと仮定すると、区間 [a, b] 上で常に f(x) < M, 従って 1/(M − f(x)) は [a, b] で連続である。
しかし M は上限ゆえ、任意の正数 ε に対して適当な x ∈ [a, b] を選べば M − f(x) < ε とすることができるから、1/(M − f(x)) > 1/ε, 即ち 1/(M − f(x)) は有界でない。有界性定理により有界閉区間 [a, b] 上の連続函数は有界であるから、これは 1/(M − f(x)) が区間 [a, b] 上で連続であったことに矛盾する。従って、f(x) = M を満たす点 x ∈ [a, b] が存在しなければならない。

アバター

質問した人からのコメント

2020/4/11 00:26:21

ありがとうございます。
単純に別証明という意味だったのですね。すっきりしました。

あわせて知りたい

この質問につけられたタグ

みんなで作る知恵袋 悩みや疑問、なんでも気軽にきいちゃおう!

Q&Aをキーワードで検索:

Yahoo! JAPANは、回答に記載された内容の信ぴょう性、正確性を保証しておりません。
お客様自身の責任と判断で、ご利用ください。
本文はここまでです このページの先頭へ

「追加する」ボタンを押してください。

閉じる

※知恵コレクションに追加された質問は選択されたID/ニックネームのMy知恵袋で確認できます。

不適切な投稿でないことを報告しました。

閉じる