ここから本文です

確率の問題です。 三人がジャンケンをしてあいこになる確率を教えてください。 ...

ban********さん

2011/3/1302:16:57

確率の問題です。
三人がジャンケンをしてあいこになる確率を教えてください。
また、グーであいこになる確率もお願い致します。

閲覧数:
41,830
回答数:
3
お礼:
50枚

違反報告

ベストアンサーに選ばれた回答

sug********さん

2011/3/1302:31:48

グーチョキパーの3通り

3人ですると言うことは

3×3×3=27通りあるうちの

グーが3つ揃う
チョキが3つ揃う
パーが3つ揃う
すべてがぱらばら

のパターンがある

すべてがぱらばらのパターンは
Aがグーの時BとCはチョキとパーかパーとチョキ
つまりAがグーの時2パターン
チョキの時2パターン
パーの時2パターン
すべてがばらばらのパターンは6パターンある

つまりすべて揃うのは3パターンなので
9通り

よって
9/27=1/3


グーであいこになるのは3パターンなので
3/27=1/9



補足
最初の問
あいこになる確率は
勝つか負けるかあいこかの3つなので
じゃんけんは1/3になる

質問した人からのコメント

2011/3/13 11:31:53

感謝 詳しい回答ありがとうございます。

「3人でじゃんけん あいこ確率」の検索結果

検索結果をもっと見る

ベストアンサー以外の回答

1〜2件/2件中

並び替え:回答日時の
新しい順
|古い順

umi********さん

2011/3/1302:30:22

三人だけなら、図に描くとすぐに答えがでますよ。

考え方は
Aさんの出すものはグー、チョキ、パーの3通り、Bさんも3通り、Cさんも3通りですよね。
これが分母になります。
あいこになるのは、全員が同じ手を出す場合と、それぞれが違う手を出す場合。
これが分子です。

これを確率の式に当てはめられますか?

考え方はサイコロの問題と同じです。
目が6つあるので、6通りの出方がある。それを2つ振って、全てが1になる確率は、以下の式で成り立ちます。
分母=6×6
6通りが3つですよね。
分子=1
全て1になるのは1通りしかない。
答えは1/36です。

これで、質問に載せた答えも導けますよね?

yan********さん

編集あり2011/3/1302:50:28

全員が同じか、全員が違うか、のどちらかがあいこの条件です。

グー、チョキー、パーの3種類があり、3人がそれぞれ3種類のどれを出しても構わないので、考えられるすべてのパターンは、3×3×3=27とおり。

このうち、全員が同じなのは、グー/グー/グー、チョキ/チョキ/チョキ、パー/パー/パーの3とおり。
全員が違うのは、グー/チョキ/パー、グー/パー/チョキ、チョキ/グー/パー、チョキ/パー/グー、パー/グー/チョキ、パー/チョキ/グーの6とおり。
従って、合わせて9とおりが、あいこになります。

9/27=1/3 (答え1)

グーであいこ(自分がグーを出してあいこと解釈しました)というのは、上記9とおりのうち、3とおりです。
従って、
3/27=1/9 (答え2)

<追伸>
他の回答者のおっしゃる「勝つか負けるかあいこかの3とおりなので、あいこの確率は1/3」という理屈は、そのまま受け取ったら誤まり。たまたま3人でじゃんけんしたから1/3になったのであり、4人や5人など大勢でじゃんけんした場合を考えると、あいこの確率は1/3にはなりません。ご注意ください。

あわせて知りたい

この質問につけられたタグ

みんなで作る知恵袋 悩みや疑問、なんでも気軽にきいちゃおう!

Q&Aをキーワードで検索:

Yahoo! JAPANは、回答に記載された内容の信ぴょう性、正確性を保証しておりません。
お客様自身の責任と判断で、ご利用ください。
本文はここまでです このページの先頭へ

「追加する」ボタンを押してください。

閉じる

※知恵コレクションに追加された質問は選択されたID/ニックネームのMy知恵袋で確認できます。

不適切な投稿でないことを報告しました。

閉じる